Impact of Performance Based Contracting on Product Reliability: An Empirical Analysis

Morris A. Cohen
Jose A. Guajardo
Sang-Hyun Kim*
Serguei Netessine

January 29, 2010
Utah Winter Operations Conference

* Yale School of Management
After-sales service market

- **Industries**: Aerospace, semiconductor, automobile,…
- **Aerospace industry**: revenues of $117 billions for repair and maintenance in 2007
 - **Commercial aircrafts**: revenues of $45 billion
Infrequent equipment failures

Engine services due to malfunction (March 2006 – March 2007)
Regional airline company with installed base of 60 engines

- March 2006: Scheduled check, Vane burn through
- September 2006: Vibration, Compressor degradation, Oil system debris
- March 2007: Fan case corrosion, Oil leak, Liner damage, Vane burn through
Contract types: T&M vs Performance-based

Time & material
Conflicting Incentives

- **Supplier**
 - Material Products
 - Wants to increase

- **Buyer**
 - Wants to decrease

Performance-based
Aligned Incentives

- **Service Provider**
 - Value of Services through Products
 - Wants to increase

- **Buyer**
 - Wants to increase

TIME & MATERIAL CONTRACTS:
Payment based on resources consumed in the service

PERFORMANCE-BASED CONTRACTS:
Payment based on flying hours generated by the service

→ Fleet Availability

Does contract type influence engine reliability?
Literature

• Service parts inventory management: Sherbrooke (1968,1992), Muckstadt (2005), Cohen et al. (1990)...

• Incentives in economics: Holmstrom and Milgrom (’91), Bolton and Dewatripont (’05), Gibbons (’05)...

• Empirical research on incentives in other areas (IS, economics, health care, public policy)

• Contracting in supply chains
 – Cachon 2003: *Supply chain coordination with contracts*, more than 200 related papers

 “Considerable amount of theory, but embarrassingly paltry amount of empiricism”
Field Research
Wharton Research on PBL

- Contracts
 - Cost sharing
 - Performance incentives

- Managerial decisions
 - Cost reduction effort
 - Stocking levels
 - Reliability improvement
 - Service capacity

- Performance outcomes
 - Cost reduction
 - Availability
 - Service time

- Exogenous factors
 - Uncertainty in cost
 - Ownership structure
 - Product reliability

Cost sharing and PBL
Kim, Cohen, Netessine (2007a)
Mgmt Science 53(12), 1843-58

Reliability or Inventory?
Kim, Cohen, Netessine (2008)
Under review

Contracting for Infrequent Restoration and Recovery of Mission-Critical Systems
Kim, Cohen, Netessine, Veeraraghavan (2009)
Under review

Impact of Performance-based Contracting on Product Reliability:
An Empirical Analysis
Gaujardo, Kim, Cohen, Netessine (2010)
Contract form evolution

<table>
<thead>
<tr>
<th></th>
<th>Small performance incentive</th>
<th>Large performance incentive</th>
</tr>
</thead>
<tbody>
<tr>
<td>Limited cost sharing</td>
<td></td>
<td>Product maturity</td>
</tr>
<tr>
<td>(Fixed Price)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extensive cost sharing</td>
<td>Product deployment</td>
<td></td>
</tr>
<tr>
<td>(Cost Plus)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **Fixed Price**: Limited cost sharing
- **Cost Plus**: Extensive cost sharing

Cost Plus
- **Cost uncertainty**
- **Performance uncertainty**

Fixed Price + PBL
- **Time**

Slide 8
Which performance measure?

1. Penalize cumulative
 \[X = \sum_{i=1}^{N} S_i \]
 Compound Poisson variable (Time average estimator)

2. Penalize average downtime
 \[X = \begin{cases}
 0 & \text{if } N = 0 \\
 \frac{1}{N} \sum_{i=1}^{N} S_i & \text{if } N > 0
 \end{cases} \]
 Sample mean estimator

Both incentivize the Supplier to invest in capacity
Supplier’s response to level of reliability under each contract

Cumulative-performance contract

\[X = \sum_{i=1}^{N} S_i \]

Average-performance contract

\[X = \left(\frac{1}{N} \sum_{i=1}^{N} S_i \right) \mathbb{1}(N > 0) \]

Supplier’s optimal capacity choice exhibits non-monotonicity in \(\lambda \) under the average-performance contract.

No-failure effect:
Little benefit of sampling
Insight #3: Does PBL induce higher reliability?

- Optimal reliability-inventory combination under old (material) contract
- Optimal reliability-inventory combination under performance contract with customer ownership
- Optimal reliability-inventory combination when supply chain is integrated
 \[R_{\text{Minimum}} = R_{\text{Material}} \]

Supply chain performs best under **PBL with supplier asset ownership**
How can contract type influence product reliability?

- Quality of service by the OEM is based on fleet availability
- Availability is driven two time based metrics
 - Response time
 - Time between removals (planned and unplanned)
- Have performance incentives (payment scheme) led to higher availability & lower cost of ownership and higher supplier/provider profits? (policy debate)
- Decision rights and risk sharing between OEM & customer
- Customer & supplier behavior
 - T&M customers more reluctant to perform pre-emptive maintenance
 - Performance incented suppliers will provide higher quality support

Main hypothesis: Performance-based contracts have a positive effect on engine reliability
Data

• Major OEM of subsystems (engines):
 – Repair and maintenance services
• 5 years of data on removals (2002-2007)

• Sample: ~ 300 engine units
The dependent variable: MTBUR

- MTBUR: mean time between unplanned removals

MTBUR = \frac{4000}{2} = 2000 \text{ flying hours}

Greater MTBUR \rightarrow \text{Greater reliability}
Statistics for the MTBUR

- Distribution by contract type:

 → Avg. MTBUR is slightly higher for PBC (3451 vs 2872)

 → More variability in MTBUR for T&M
Statistics for the MTBUR

• Distribution by aircraft model:
Explanatory model for the MTBUR

TWO STAGE MODEL

Explain **Contract choice**
- Fleet size
- Fleet mix
- Owner Avg. time per flight
- Owner region
- Aircraft model

Explain **MTBUR**
- Initial age
- Initial age sq.
- Avg. time per flight
- PB contract
- MTBUR
- Aircraft model
- Owner region
<table>
<thead>
<tr>
<th>VARIABLES</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PBC</td>
<td>1304**</td>
<td>1151*</td>
<td>1331***</td>
<td>1299*</td>
</tr>
<tr>
<td>ini_age</td>
<td>.253</td>
<td>.262*</td>
<td>.246</td>
<td>.249</td>
</tr>
<tr>
<td>ini_age_square</td>
<td>-.00008</td>
<td>-.000009</td>
<td>-.00008</td>
<td>-.00008</td>
</tr>
<tr>
<td>eng_avgflighttime</td>
<td>1257*</td>
<td>1219</td>
<td>1148*</td>
<td>1150*</td>
</tr>
<tr>
<td>region_europe</td>
<td>-9.04</td>
<td>38.9</td>
<td>64.8</td>
<td>68</td>
</tr>
<tr>
<td>region_other</td>
<td>-1402***</td>
<td>-1265**</td>
<td>-1336***</td>
<td>-1315**</td>
</tr>
<tr>
<td>aircraft_model2</td>
<td>1141*</td>
<td>1076*</td>
<td>1232*</td>
<td>1211</td>
</tr>
<tr>
<td>aircraft_model3</td>
<td>-1868**</td>
<td>-1832**</td>
<td>-1678*</td>
<td>-1687*</td>
</tr>
<tr>
<td>selectivity_term</td>
<td>-721**</td>
<td>-637</td>
<td>-737**</td>
<td>-719</td>
</tr>
<tr>
<td>fleetsize</td>
<td>.466</td>
<td></td>
<td>.0913</td>
<td></td>
</tr>
<tr>
<td>fleetmix</td>
<td></td>
<td></td>
<td>71.9</td>
<td>65.9</td>
</tr>
<tr>
<td>Constant</td>
<td>85.7</td>
<td>175</td>
<td>-59</td>
<td>-29.2</td>
</tr>
<tr>
<td>Observations</td>
<td>305</td>
<td>305</td>
<td>305</td>
<td>305</td>
</tr>
</tbody>
</table>

Cluster (owner) SE in parentheses, *** p<0.01, ** p<0.05, * p<0.1
Robustness

- Alternative specifications
- Alternative MTBUR proxies
- Duration models

Finding robust to several variations

PB contracts have positive impact on product reliability

- No significant effect if we look at mean time between planned removals
Results and conclusions

• Impact of performance-based contracts on engine reliability

• **Two stage model** approach
 – addresses **endogeneity** in contract choice

• **Significant and positive effect of performance-based contracts on reliability**
 – Finding is robust to several variations

• **One of the few empirical studies on supply chain contracting in OM**
Impact of Performance Based Contracting on Product Reliability: An Empirical Analysis

Morris A. Cohen
Jose A. Guajardo
Sang-Hyun Kim*
Serguei Netessine

January 29, 2010
Utah Winter Operations Conference

* Yale School of Management